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Abstract
In this paper, we consider a product of quasi-differential expressions
11, T9, ..., T, each of order n with complex coefficients and their formal
adjoints TI’, ‘r;, . ‘t; on [0, b), respectively. We show in the direct sum

spaces Lz) (I p), p=12, .., N of functions defined on each of the separate

intervals in the case of one singular end-points and under suitable conditions on

the function F that all solutions of product integro differential equations

[Hn [T k]}y(t) = wF are bounded and Lg)—bounded on [0, b).
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1. Introduction
The problem that all solutions of a perturbed linear differential

equation belong to Lij (0, ©) assuming the fact that all solutions of the

unperturbed equation possess the same property considered by Wong and
Zettl [1-3]. In [4] and [6], Ibrahim extends their results for a general
quasi-differential expression 1 of arbitrary order n with complex
coefficients, and considered the property of boundedness of solutions of a

general quasi-integro differential equation
tfy] - 2wy = wf(¢, y), (A e C)on [0, b), (1.1)
f(¢, y) satisfies
If(¢, ¥)| < k(@) + h(t)]|y@)|]°, tel0, b) for some o €0, 1],
provided that all solutions of the equations
(t-Au=0and (" ~AI)v=0 (LeC), (1.2)
and their quasi-derivatives are in L2 (0, b).

Our objective in this paper is to extend the results in [1], [2], and [4-
9] to more general class of product quasi-integro differential equations in

the form

[Hn T - ?»I}y(t) = wF(t, yO1 Y0 y["QN_l]jon [0, b), (1.3)
Jj=1

F(t, y[O], y[l], e y[nzN_l]) satisfies

2 —_ .
F(e L5 E) <k 4 3 T e, < lo.0)

for some o€[0,1],0<b <o in direct sum spaces LE) [0, bp),

p=12, .., N of functions defined on each of the separate intervals
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with the case of one singular end-points. Also, we prove under suitable

conditions on the function F that, if all solutions of the product equation
[H;.Lzlrj - KI]u =0 and its adjoint [H;l:lr}f —KI]U =0 and their
quasi-derivatives belong to Lg)(O, b), then all solutions of (1.3) also

belong to L%U (0, b), where r}' is the formal adjoint of 1;, j =1, 2, ..., n.

We deal throughout this paper with a quasi-differential expression

T; each of arbitrary order n defined by Shin-Zettl matrices (see [6] and

j
[9-11]) on the interval I = [0, b). The left-hand end-point of I is assumed

to be regular but the right-hand end-point may be regular or singular.
2. Notation and Preliminaries

The domain and range of a linear operator T acting in a Hilbert space
H will be denoted by D(T') and R(T'), respectively, and N(T') will denote

its null space. The nullity of 7, written nul(T'), is the dimension of N(T')
and the deficiency of T, written def(T), is the co-dimension of R(T') in H;

thus if 7' is densely defined and R(T) is closed , then def(T') = nul(T").

The Fredholm domain of 7' is (in the notation of [13]) the open subset
As(T) of C consisting of those values of A € C, which are such that

(T —AI) is a Fredholm operator, where I is the identity operator in 7.
Thus AeA3(T) if and only if (7 —AI) has closed range and finite
nullity and deficiency. The index of (7 -AI) is the number
ind(T — M) = nul(T — M) — def (T — AI), this being defined for A € A3(T).

Two closed densely defined operators A and B acting in a Hilbert
space H are said to form an adjoint pair if A ¢ B* and, consequently,
B c A"; equivalently, (Ax, y) = (x, By) for all xe D(A) and ye D(B),

where (., .) denotes the inner-product on H.
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Definition 2.1. The field of regularity [1(A) of A is the set of all

L e C for which, there exists a positive constant K(A) such that
[(A—AI)x| = K(1)|x| for all x e D(A), (2.1)

or, equivalently, on using the “closed graph theorem”, nul(A - AI) =0

and R(A — AI) is closed.

The joint field of regularity [1(A, B) of A and B is the set of AeC,
which are such that Ae[l(4), Aell(B) and both def(A —AI) and
def(B - Al ) are finite. An adjoint pair of A and B is said to be compatible,
if TI(A, B) # ¢.

Given two operators A and B, both acting in a Hilbert space H, we

wish to consider the product operator AB. This is defined as follows:
D(AB) = {xe D(B)| Bx e D(A)} and (AB)x = A(Bx) for all x e D(AB).
(2.2)

It may happen in general that D(AB) contains only the null element
of H. However, in the case of many differential operators, the domains of

the product will be dense in H.

The next result gives conditions under which the deficiency of a

product is the sum of the deficiencies of the factors.

Lemma 2.2 (cf. [14, Theorem A]). Let A and B be closed operators
with dense domains in a Hilbert space H. Suppose that L = 0 is a regular

type point for both operators and def(A) and def(B) are finite. Then AB

is a closed operator with dense domain, has A = 0 as a regular type point

and

def(AB) = def(A) + def(B). (2.3)
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Proof. The proof is similar to that in [5], [7], [12], and [16].

Evidently, Lemma 2.2 extends to the product of any finite number of

operators Ay, Ay, ..., A,.

3. Quasi-Differential Expressions in Direct Sum Spaces

The quasi-differential expressions are defined in terms of a Shin-Zettl

matrix F,, on an interval I,. The set Z,(I,) of Shin-Zettl matrices on

I, consists of n x n-matrices F, = {r’; }, p=12 .., N whose entries

p

are complex-valued functions on I,, which satisfy the following

conditions:

e eL%OC(Ip), 1<r,s<n, n2=2

P20, a.e., on [ 1<r<n-1, (3.1)

s =0, ae,onl, 2<r+l<s<n, p=12 .., N.

For F,,eZ W (L p ), the quasi-derivatives associated with F, are defined by
=9,

y[r] = (frl,]r+1 )_1{(y[r1]) B ZZIfrI‘;y[SI]}, ber=n-l 32

e 1] gt

where the prime’ denotes differentiation.

The quasi-differential expression 1, associated with F), is given by

p
Tl ] = ity s g (3.3)

this being defined on the set



16 SOBHY EL-SAYED IBRAHIM
V(‘Cp) = {y : y[r_l] eAClOC(Ip), r=12, ..., n}, p=12 .., N,

where ACloc(I p), denotes the set of functions, which are absolutely

continuous on every compact subinterval of I,,.
The formal adjoint t,, of 1, is defined by the matrix F, given by
‘C;[. ] = i”y[f], for all ye V(r;), (3.4)
V(r;):z {y : yg’"_l] eAClOC(Ip), r=12 .., n}, p=12 .., N,
where yer*l], the quasi-derivatives associated with the matrix F; in
Zy(Ip),

Fy = (f% )= (1) tstpp for each r and s. (3.5)

n—-s+1l,n—-r+1’

Note that (f, )= F, and so (1, ) = t,. We refer to [4], [6, 7],

[10-13], and [15, 16] for a full account of the above and subsequent

results on quasi-differential expressions.

For ue V(rp), ve V(r; ), and o, e I, we have Green’s formula

[ el - weplels = 01e,)- [ vllay). P =12 N, G0

D
where
n-1 +s+1 [r]eng [n-r—1]
. w)) = 87 17 o )|
v
= (- i)n(u, Wl u[”_l])x Josnl 1| (x); (3.7
gln-1]

Ut

see [1], [4], [7], [10, Corollary 1], and [15].
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Let the interval I, have end-points a, bp(— w<a, <b, < oo), and

p
let w, : I, > R be a non-negative weight function with w, e L%Oc(Ip)
and w, >0 (for almost all xel,). Then H, = Lip(lp) denotes the

Hilbert function space of equivalence classes of Lebesgue measurable

functions such that II w p|f|2 < oo; the inner-product is defined by
p

(f, 8), = L wpf(x)gdx, (f.gel (I,).p=12 .., N). (8
P

The equation

tpu] - rw,u =0 (AeC) on [ p=12 .., N, (3.9)

p’

is said to be regular at the left end-point a, €R, if for all X e(a,, b, ),

a,eR, wp,frgeLl(ap,X), r,s=12 ..,np=12 .., N.

Otherwise (3.9) is said to be singular at a,. If (3.9) is regular at both

end-points, then it is said to be regular; in this case, we have
1 .
ap, by eR, wy, fhel (ap, bp), r,s=12..,np=12 .., N.

We shall be concerned with the case when a, is a regular end-point

p
of (3.9), the end-point b, being allowed to be either regular or singular.
Note that, in view of (3.5), an end-point of I p is regular for (3.9), if and

only if it is regular for the equation

pv]-Aw,w=0 (LeC) onl,, p=12 .., N. (3.10)

Note that at a regular end-point a,, say, u[r_l](ap)(v[f_l](ap)),

r=1,2, ..., n is defined for all ueV(rp)(veV(r; )) Set
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D(rp) ={u: ueV(rp), u and w},?lrp[u]eLi (ap, bp)}, p=12 .., N,
P

D(r};):: {v: veV(r;), v and wglr;[v]eLZ} (ap, bp)}’ p=12,..,N.
P

(3.11)

The subspaces D(rp) and D(r};) of I (ap, bp) are domains of the

Wp

so-called maximal operators T(r p) and T(r;), respectively, defined by
T(rp)u = wglrp[u], (ueD(t,)) and T(r; )v = wlglr;[v], (ve D(t))).

For the regular problem, the minimal operators To(rp) and To(r;),

;,LCp [u] and w,

plr;[v] to the

p=12 .., N are the restrictions of w

subspaces
Do(rp) ={u: ueD(rp), u[r_l](ap) = u[r_l](bp), p=12 .., N}
Do(‘E;) ={v: veD(r;), er_l](ap) = vk_l](bp), p=12 .., N} (312
respectively. The subspaces D (r p) and D (r;) are dense in Li)p (a P bp)
and To(rp) and To(r;) are closed operators (see [4], [7], [10, Section 3],

[12, 13], and [15, 16] ).

In the singular problem, we first introduce the operators 7§ (‘c p) and

plrp[. ] to the subspace

79 (r; ); T (r p) being the restriction of w

Df)(rp) ={u: ueD(rp), supp (u) (ap, bp), p=12 .., N}, (313)

and with Té(‘t;) defined similarly. These operators are densely-defined

and closable in L“fu (ap, b,); and we define the minimal operators
p

To (‘C p) and T} (‘C;) to be their respective closures (see [4], [10], [13], and [15]).
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We denote the domains of Tp(c,) and Tylth) by Do(t,) and Dolth)

respectively. It can be shown that
ueDO(rp) = u[r_l](ap) =0, (r=1,2,...,m;p=12,..., N),
veDO(r;): er_l](ap) =0, (r=1,2..,mp=12 .., N), (3.14)

because we are assuming that a, is a regular end-point. Moreover, in

both regular and singular problems, we have

Tg(rp) = T(r;), Tg(rp) = To(r;), p=12 .., N; (3.15)
see [9, Section 5] in the case when 1, = r; and compare with treatment

in [4] and [13, Section III, 10.3] in general case.

We summarize a few additional properties of Tj(t) in the form of a

lemma.

Lemma 3.1. We have
O (BET = @, )= @[l

[To(<")]" = EBf.L[To(TZ)]* = @p[T(x,))
In particular,

DTy = DIT(+)] = @pulT(xp)),

DIToy(<")" = DIT()] = @pa[T(xp)].

() nul[Ty(x)-Al] = Zj::lnul[To (rp) - 7»]],

nul[To(v) - 11 = Zj::lnul[To (c5)- 1]
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(iii) The deficiency indices of Ty(t) are given by

def[To(x) - AI] = Zj:ldef[To(r )= M) for all & e T[T (c, )],

def|Ty(+") - 71 = Zj::ldef[TO (c)- 1] for att 2 e T[Ty (e )]

Proof. Part (a) follows immediately from the definition of Tj(tr) and

from the general definition of an adjoint operator. The other parts are
either direct consequences of part (a) or follow immediately from the

definitions.

Lemma 3.2. Let Ty(t) = @gleo(rp) be a closed densely-defined

operator on H. Then,
M[7To(0)] = NG [Tolx,)].

Proof. The proof follows from Lemma 3.1 and since R[T}(t) - AI] is
closed if and only if R[TO(‘CP)— kI], p=12 ..., N areclosed.

4. The Product Operators in Direct Sum Spaces

The proof of general theorems will be based on the results in this
section. We start by listing some properties and results of quasi-

differential expressions 1y, Tg, ..., T,. For proofs, the reader is referred

to [3], [7-10], and [14-18].
(t+712)" =1 +13,
(1y79)" = 1t31f, (W) = At for A a complex number. (4.1)

A consequence of Properties (4.1) is that if 1" =1, then

(P(t))" = P(*) for P any polynomial with complex coefficients. Also, we
note that the leading coefficients of a product is the product of the leading

coefficients. Hence, the product of regular differential expressions is

regular.
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Lemma 4.1 (cf. [12, Theorem 1]). Suppose t; is a regular differential

expression on the interval [a,b] and A ell[Ty(t; 19 ... T,),

To(ty t9 ... 1,)" ], then we have

(1) The product operator H};:l To(rj) is closed, densely-defined, and
def[szl To(t;) - u} - Z;‘:l def[Ty(x;) - 1),
n _ n _
def[szl Tolet ) - u} - > deflrple)- 71

1) To(ty t9 ... 1) < H [To(7)] and To(ry tg ... 1y )" < H;'l:1

[To(<;)]-

Note in part (ii) that the containment may be proper, i.e., the
operators Ty(t; t9 ... 7,,) and H [To(r are not equal in general.
We refer to [6, 7], [15], and [16] for more details.

From Lemmas 3.1 and 4.1, we have the following:

T (o (e)) T, (e - e have

o ([T, 7560 - @3 [T, 75 65)| - @3] [T, 7065
[1_[::1 T3(er)) = @Y, D_[::l T3 (e, )} = O [HZ.L:lT(ij )}-

(ii) nul[H;L:lTo(r PEYVIE Zj:lnuz[njzl Tolp) - u}

-3 O nudlylejy) - 1)

Lemma 4.2. For A €[]
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nul [H:Zl T, (r;r ) - = Zj::l nul {Hr_l_l T, (rjp ) - XI}
= Zj::l (Z;L:l nul [TO (t;fp ) - XI] )-

(i11) The deficiency indices of H;l:l To(r j) and H;L:1T0 (r;) are given

by
def [1_[:=1 To(t;) -] = ijl def [H; Ty(t;,) - u}
) Zj:l(ijldef (7o (xjp) - 21]),
def ([T, Tole})- 711 = Zjldef[Hll To(ct) - xl}

J

- X, aerns)- 7).

Lemma 4.3. For A € []

[T o5 ) T o)1)

def H;-Lzl[TO(Tj )] - M]+ def[H;l:l [To(<})] - XI] is constant, and

0< defD_[;L:l [To(x;)] - u} 4 defD—[;l:l[TO(r} )] - XI} < 2nN.

In the problem with one singular end-point,

22N < defD_[jl[To(t - u} 4 def[H?l[To(r;f )] - XI} < 92N,

forall » e T1 H?ZI[TO(TJ' )], l_IZ-LZI[To(T;‘r )]]
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In the regular problem,

defD_[;ll[To(r - u} . def[Hjl[TO(r;f - XI} _ 902N,

forall ) H[H?ZI[TO(TJ' )1, H;l:l[TO(T}r )]]

Proof. The proof is similar to that in [4], [6, 7], and [12-16] and

therefore omitted.
Lemma 4.4. Let 11, 19, ..., 1, be a regular differential expressions on

[0, b) and suppose that L € [1[Ty(ty Ty ... T,,), To(ty 9 ... 7,)" ). Then

n
[To(ty T2 .. 1)) = szl[To(Tj)]’ (4.2)
if and only if the following partial separation conditions is satisfied:

(f e 2(a,b), f [s-1] ¢ AC},.[0, b), where s is the order of product expression

(t1 T9 ... 1) and (11 Tty ... 1,)"f € I2(0, b) together imply that

(Hk (i )f e 120,0), k=1,..,n-1}. (4.3)

J=1

Furthermore,
n n
To(ry T oo 1) = szl[To(Tj)] and To(1y tg ... T,)" = szl[To(T;)]-
If and only if

def [Tp(ty g ... 1,)—AI] = Z;Lzldef[To(rj)— il

def[To(ty 1o ... 1)" — 71| = >

def[Tole;)- 71
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We will say that the product 7y, 19, ..., T, is partially separated

expressions in ng (a, b) whenever Property (4.3) holds.

Corollary 4.5 (cf. [5, Corollary 1]). Let t; is a regular differential

expressions on [0, b) for j =1, 2, ..., n. If all solutions of the differential
equation (t; — A )u = 0 and (1 ~2)v =0 on [0, b) are in L2/(0, b) for

j=1,2,...,n and \ € C; then all solutions of [H;l:ltj ~Mu =0 and

(H;.Lzlr; ~%I)v =0 on [0, b) are in L2 /(0, b) for all i € C.

Proof. Let n = n; = order of T = order of r}‘ for j=1,2,...,n

Then by Lemma 4.1, we have

def[H;‘:lTO(rj)- I = Zj::ldef{nleo(rjp)— u} _n2,

def[Hjl To(xt) - KI} : Zjﬂ def D‘[jl Toles,) - X[} _n2,

Hence, by Lemma 4.2, we have

def[To(ty Tg ... 1) —AI] = def{H;lleo(r;f)— XI} = Zf::lz;l:lnj

= n?N = order of (1] 13 ... 1,,) = order of (11 Tg ... 1,)".

Thus def[Ty(t) ... 5 tf)-AI]= order of (7 19...7,)" and

consequently, all solutions of the equations [Hn -~ AMJu =0 and

j=1
(H;L:l tf —=AI)v =0 are in I2 (0, b). Repeating this argument with T

replaced by t:, we conclude that all solutions of (H;L:lt; X =0

are in L2(0, b).
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The special case of Corollary 4.6 when 1; =t for j =1,2,..., n and

T 1s symmetric was established in [2] and [5]. In this case, it is easy to

see that the converse also holds. If all solutions of (1" —AI)u = 0 are in
I2/(0, b), then all solutions of (t—Al)uw =0 must be in L2(0, b). In
general, if all solutions of [(t; T ... T, ) — A Ju = 0 are in L2(0, b), then

all solutions of (1, —AI)u =0 are in L2(0,b) since these are also

solutions of [(t; 19 ... 1,,) = Al]Ju = 0. If all solutions of the adjoint
equation [(t; Ty ... T,)" = ALJv = 0 are also in L2 (0, b), then it follows

similarly that all solutions of (1} = AI)v = 0 are in I2(0, b).

Denote by S(t) and S(t") the sets of all solutions of the equations
n B oo = B
[szlrj ~%oI]u = 0 and (szlr] rol)v =0, (4.5)
respectively, and let Sr(r):{y[r]:[H;.Lzlrj—kOI]y:O,r:1,2,...,n2N—1}

denote the set of all quasi-derivatives of solutions of [H;Lzlr j—Mol Ju=0.

Let o@pt, A), k=12, ..., n’N be the solutions of the homogeneous

equation

n
“ I rj—%I}uzo (reC), (4.6)
Jj=1
satisfying

(pg.k_l](to, L) = 8y p41 for all ¢y €[a, b),

j k=12 ..,n’N,r=0,1, ..., n°N -1,
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for fixed ¢y, a <ty <b. Then (pgr](t, L) is continuous in (¢, 1) for

a <t<b |\ <w, and for fixed ¢ it is entire in A Let ¢f(¢ 1),

k=12, ..., n?N denote the solutions of the adjoint homogeneous equation
n + —
[H - u}u =0 (reC), (4.7)
Jj=1
satisfying

(@i (ko ) = (175, oy for all tg [0, b),

k=12 ..,n°N,r=0,1,..., n2N - 1.

Suppose a < c¢ <b. By [9], [14], and [15], a solution of the product

equation

{Hn 5T “}” =wf (LeC), feLy(0,b), (4.8)

j=

satisfying u[r](c) =0,7r=0,1,..,n°N -1 is giving by

0(t,7) = (Mj S i 1) oo, 1N )uls)ds,

2
lnN

where ¢ (¢, A) stands for the complex conjugate of (¢, 1) and for each

Ik, éjk is constant, which is independent of ¢, A (but does depend in

general on £).

The next lemma is a form of the variation of parameters formula for a

general quasi-differential equation is giving by the following lemma:

Lemma 4.6. Suppose feLl (0,b) locally integrable function and

o(t, 1) is the solution of the Equation (4.8) satisfying

q)[r](to, L) =0, forr=0,1,..., n’N -1, to [0, b).
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Then
n?N 2N
ot 2)= D Va0t o)+ (= 2o) /7N )
N t——————
Y e r) oi6 hN(hwsds,  (49)
for some constants ai(L), ag(}r), ..., (Xn2(>\.)€ C, where ¢j(t, ko) and

or(t, Xo), Jo k=1,2, ..., n?N are solutions of the equations in (4.5),

respectively, éjk is a constant which is independent of t.

Proof. The proof is similar to that in [6, 7], [10, 11], and [15, 16].

Lemma 4.6 contain the following lemma as a special case:

Lemma 4.7. Suppose feLl (0,b) locally integrable function and

o(t, 1) is the solution of the Equation (4.8) satisfying

(p[r](to, M) =0, forr=0,1,...,n% -1, t5el0,b).

Then
'] n*N [r] 1
¢ (t7 }“) = Zj=1 (XJ(}L)(P] (t7 }“O)-’_ 22N (7\‘ _}“O)
l
n2N . t————
o el )| et o uls)ds, (4.10)

forr=0,1, ..., n?N -1. We refer to [3], [9], and [14] for more details.

Lemma 4.8. Suppose that for some LyeC all solutions of the
equations in (4.5) are in Li) (0, ). Then all solutions of the Equations

(4.6) and (4.7) are in L2 (0, b) for every complex number i  C.

Proof. The proof is similar to that in [16, Lemma 3.3].
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. . n
Lemma 4.9. If all solutions of the equation [szlrj - Aowlu =0

are bounded on [0,b) and of(t, ho) e L, (0, b) for some ArgeC,

k=1,..., n?N. Then all solutions of the equation [Hn

1% T AMolu =0

are also bounded on [0, b) for every complex number A € C.

Proof. The proof is similar to that in [16, Lemma 3.3].

Lemma 4.10. Suppose that for some complex number LyeC, all
solutions of the equations in (4.5) are in L?U(O, b). Suppose feL%U(O, b),

then all solutions of the Equation (4.8) are in LZ, (0, b) forall reC.

Proof. Let {o;(t, 1), 9a(t, 1), ..., (pnzN(t, M} {o7 (s, 1), e3(s, ), ...
(p+2N(s, L)} be two sets of linearly independent solutions of the
n
Equations (4.5). Then for any solutions (¢, A) of the equation

[H;L:lrj - AM]e =wf (heC), which may be written as follows

[H;lzl(tj )= Aowle = (A — Ao wf + wf and it follows from (4.9) that

n’N 1 n’N .
= : . Ik .
001 = 2y @iIejlh) v 55 D L et ko)
—_
<[ it 2010~ 20)0(s, 1) + F(6)uls)ds, (4.1
a
for some constants o (A), ag(Rr), ..., ocnzN(x)e C. Hence

n?N n2N .
lo(t, 1) < ijl (Jou )] |t 20)|) + Zj’kzl‘gjk“@j(ta o))

<[ ottt ) 1= hol (s, 2 +FG Jwl)ds. (412
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Since feI2(0,b) and ¢f(,1q)eL2(0,b) for some XigeC, then

(pZ(.,kO)feL}u(O, b), for some Ly eC and k =1, ..., n?N. Setting

i) = Z1L kA,

Then

ol (1, 7»0)‘|f(s)|w(s)ds, i=12 .., n’N. (413

lo(t, 1) < ijf’(]aj(xn + C00)|0;(t 2|+ P — o

2 . b
D o foste ro)l[

On application of the Cauchy-Schwartz inequality to the integral in
(4.14), we get

0 (6 1) F(©)w(s)ds. (414

n’N n’N :
ot 1 < D77 (o] + G006 o) + =2l D77 [ loj e 2o)

I

From the inequality (u + v)? < 2(u? + v?), it follows that

b |-

ol (2, XO)‘Zw(s)dsJE(J.;kp(s, 7»)|2w(s)dsj . (4.15)

2N 2N |
ot P <47 a0 + €0 o6 2o + 4k = 20P Y 7 | loj e, 20)f

b—2 b
x U. ‘(pZ(t, Lo )‘ w(s)dsj (J. o (s, X)|2w(s)dsj. (4.16)
a 0
By hypothesis, there exist positive constant Ky and K; such that

< Kl;
12,(0,b)

lo (@, ko)lng)(o,b) < Ky and H@Z(S, Ao )

j. k=12 .., n°N. (4.17)
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Hence

’N
o, M <4 (o 0]+ Ci0 o6 2o)]” + 4KEp. ~ 2ol

J, k=1

x Z ‘gl ‘ |(pj(t, }.0)| (J.O lo(s, 1) w(s)ds]. (4.18)
Integrating the inequality in (4.18) between 0 and ¢, we obtain

J't| (s, M)w(s)ds < Ky + | 4 — 1 |2Z"2N ‘af"‘z
O(P ’ =2 0 j, k=1

x j 0t|(p it x0)|2( j ;|(p(x, X)|2w(x)dx]w(s)ds, (4.19)

where
Ky = 4K2 "2N( 2|+ C; () 4.20
2 = Ozj=1 |<lj( )|+ ) (4.20)
Now, on using Gronwall’s inequality, it follows that
; 2 2 oy N |2 [ 2
I0|¢(s, M)|"w(s)ds < Ky exp| 4K{'|A — Lol ZMZI‘& ‘ .[()'(Pj(t’ k0)| w(s)ds |.

(4.21)
Since, ¢;(t, 1o)e L2 (a, b) for some Ay eC and for j =1, ..., n2N, then
o(t, h)< L, (0, b).

Remark. Lemma 4.10 also holds if the function f is bounded on

[0, b).
Lemma 4.11. Let f € Li, (0, b). Suppose for some Ay e C that

() all solutions of (H;l=1tj+' ~%I)e" =0 arein IZ(0, b).
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(i1) (pg-r](t, ‘o), j=1..,n2N are bounded on [0,b) for some

r=0,1,..,n2N —1.

Then (p[r](t, Ae Lﬁ,(O, b) for any solution o¢(t, \) of the equation
[H;l:lrj - Mo = wf forall LeC.

In the sequel, we shall require the following nonlinear integral
inequality, which generalizes those integral inequalities used in [6, 7],
[12], and [17-19].

Lemma 4.12 (cf. [1-4]). Let u(t) and v(t) be two non-negative

functions, locally integrable on the interval I = [0, b). Then the inequality
t
u(t) < co +I v(s)uP(s)dx, co >0,
0

for 0 < o <1, implies that

1

ult) < [(CO )(170) +(1- G)J.(: v(s)dsjmds. (4.22)

In particular, if v(s) € L0, b), then (4.22) implies that u(t) is bounded.

Lemma 4.13 (cf. [1-8]). Let u(t), z(t), g(¢), and h(t) be non-negative
continuous functions defined on the interval I = [0, b) and suppose that

the inequality

Do |~

u(t) < 2(t) + g(t)(J;uz(s)h(s)dxj for t >0,

Then

(S

u(t) < z(t) + g(t) (J.; 222(s)h(s)exp“osZgZ(x)h(x)dx} dsJ for t > 0.
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5. Boundedness Solutions of Product Equations

In this section, we shall consider the question of determining

conditions under which all solutions of the Equation (1.3) are bounded

and Lg) -bounded.

Suppose there exist non-negative continuous functions k(¢) and h;(¢)

on [0,0),0<b<o;i=0,1..,n2N -1 such that

n2 - ; (¢}
Fe 050N < k4 3 o) for e 2 0

(5.1)
—w® < y[i] <o, for each i =0,1,...,n N -1 and for some ce[0,1];
see [1], [8], and [18-19].

Theorem 5.1. Suppose that F satisfies (5.1) with ¢ =1, S (1)U
S(t") < L*(0, b) for some r=0,1,...,n’N -1, for some LoeC and
that

(i) k(t) e I},(0, b) forall t [0, b).

(i) h;(t) e I},(0, ) forall t € [0, b),i=0,1,..., n>N - 1.

Then (p[r](t, A),r=0,1,..,n°N-1 are bounded on [0,b) for any
solutions ¢(t, A) of the Equations (1.3) for all \ € C.

Proof. Note that (5.1) and Lemma 4.6 implies that all solutions are
defined on [0, b); see [1], [2], [6, 7], and [13, Chapter 3]. Let {o;(¢, ),

(P2(t’ 7‘0)’ ) (PnZN(t’ 7\'O)}’ {(PI(S’ }‘0)’ (PE(S, }‘0)’ () (P;QN(S’ 7‘0)} be two

sets of linearly independent solutions of the Equations (4.5), respectively,
and let ¢(¢, ) be any solution of (1.3) on [0, b), then by Lemma 4.7, we

have



ON THE INTEGRABLE SOLUTIONS OF PRODUCT ... 33

- n?N - 1 n?N ik [r]
O 1) = Dy eI 20) 5 O r0) D TN 20)

t—
X_[ o (s, lo)F(S, A0 y["ngl])w(s)ds,

forr=0,1, ..., n?N 1. (5.2)

Hence

ol ) < Ziflaj(xn o, 20)| + 1~ 2ol ijfi JEH o, 2] loi 5, 7o)

* .[ ;‘m‘ (k(s) + Zfév iy (S)‘w[i](s, K)U w(s)ds,

r=0,1,..,n°N -1. (5.9)

Since k(s) e L, (0, b) and ¢} (s, o), k =1, 2, ..., n2N are bounded on

[0, b) for some L € C, we have @j (s, Lo )k(s) € L, (0, b), k =1, 2, ..., n2N

for some Lg € C. Setting

2N | o pt————
- _ Jk + - 2
Ci = =2l E j,k=1‘§ H.a(pk(t, ro)k(s)w(s)ds, j =1, 2, ..., n*N. (5.4)
Then

(Pgr](t, 7»0)‘ + 1= 2ol Z:Zl :iNﬁl‘ajk‘

olie, 1) < Zjiv (C; + |a;(0))

ol o)

x J.(:‘(p;{'(t, )\O){hi(s)‘(\o[i](s, X)‘w(s)ds, r=0,1,.., nZN -1 (5.5)

By hypothesis, there exist a positive constants K; and Kj such that

‘gog.r](t, xo)\ < Ky and |} (¢, ho)| < K; for all t € [0, b), j, k =1, ..., n®N,

r=0,1, ..., n’N -1. Hence, by summing both sides of (5.5) from r = 0

to n?N — 1, we get
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ZN- 2
an "ol 1) < (n*N - 1)K02’_‘7f’ (©; + [0, 0)]) + (2N — DR K . — )
r= =
n2N jk t(
x Zj,k:l‘é ”0 MaAX i n2N_1 hi(s))

x (Ziév_l‘(p[i](s, K)U w(s)dx. (5.6)

Applying Gronwall’s inequality to (5.6) and using (ii), we deduce that

2
Z;l:fv 71‘(p[r](t, X)‘ is finite and hence the result.

Remark. From [3, Section 3] and [4], ¢ and (p[j] eL}U(O, b) implies
that (p['"](t, A) e I},(0, b) for any solution (¢, ) of the Equations (1.3)

foral L eC,r=1,..,j-1,1<j<n?N-1.

Theorem 5.2. Suppose that F satisfies (5.1) with ¢ =1, S" (1) U S(=*)

c L?U(O, b), for some Ly € C and some r =0, 1, ..., n?N -1 and that
() k(t) € I2/(0, b) forall ¢ € [0, b).
(i) h;(t) € L2(0, b) forall t €[0,b),i=0,1,..., n?N —1.

Then (p['"](t, A) e L?U(O, b),r=0,1,..., n?N -1 for any solutions o(t, 1)
of the Equations (1.3) for all . € C.

Proof. Applying the Cauchy-Schwartz inequality to the integral in
(5.5), we get

LRV ED MR IV PR i S

1=0
<P[jr](t, 7»0)‘ U;

1
2
X

oi 6 20)] (oot

1
X U‘t|hl(s)| ‘(p[i](s, k)‘2w(s)dsj2, r=0,1,..,n2N -1. (5.7
0
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Since ¢f(t, 1o)eL2(0,b), for some AgeC and h(t)e L0, b)

1
by hypothesis, then (¢, Lo)|h;(¢)2 eL%,(O, b), k=12, .., n2N,

i=0,1,...,n°N —1. Let

(]

and

oi e ha)] Istputoyas || =)= 37 (C; oo o 2o

G(t) = [r - 7‘°|Z;L,2;Z1 ZTLZN e ol 20,

1=0

From Lemma 4.13, we have

ot 1| < 2() + G(t)( J’ ;2Z2(s)|hi s)| exp{ j 052G2(x)|hi (x)|w(x)dx}w(s)ds}§.

Since ISZZ(S) |h; (s)lw(s)ds and j;Gz(x)|hL(x)|w(x)dx are both finite, we

conclude that (p[r](t, L) is bounded by a linear combination of
I2(0,b) functions Z(t) and G(t). Therefore, by using Lemma 4.8,

(p[r](t, A) e Li,(O, b),r=0,1,...,n2 N -1 forall 1 e C.

Remark. If we use the Cauchy-Schwartz inequality for the integral
in (5.5) as

I
< ( j;|<p;Txo>|z|hi<s>|2w<s>dst :

we also get the result. We refer to [1] and [2] for more details.

i s 1) :(6)] |05, 2f(s)ds

1
. 2 2
(p[L](s, k)| w(s)dsj ,i=1,2, ..., n°N -1,
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2 nZN-
F(t, MO N‘”j‘ o

X hi(t)‘y[i](t)‘, S"(t)U S(x*) < I2(0, b) for some Ay e C and some

Corollary 5.3. Suppose that

i=0,1,..,n°N -1 and that h;(t)e LE (0, b) for some p > 2, t € [0, b);
i=1,2 .., n°N-1. Then (p[r](t, A) e L, (0, b) for any solutions o(t, 1)
of the Equations (1.3) forall . € C andall r =0,1, ..., n’N -1.

Proof. The proof is similar to Theorem 5.2 and therefore omitted.

The special case h;({)=0,i=0,1,..., n2N -1 and k() € L2/(0, b)

yields the result.

Corollary 5.4. Suppose that for some Ag<€C, if all solutions of the
equations [H;l:ltj] = howu and [H;Lzlr;] = howv are in L2 (0, b) for
some Ao € C and k(t) e L2(0, b). Then all solutions of the equations

[H;lzlrj — 2wl = wk arein L2(0, b) for every complex number ) e C.

Next, for considering (5.1) with 0 < ¢ < 1, we have the following:

Theorem 5.5. Suppose that F satisfies (5.1) with 0<oc <1,
ST(t)U S(x*) = L2(0, b), for some iy € C and some r = 0,1, ..., n?N -1
and that

() k(t) € L2/(0, b) forall ¢ € [0, b).
(i) A (t) € LX0)0, b) forall t € [0, b),i=0,1, ..., n2N — 1.

Then (p[r](t, A) e I2(0,b), r=0,1,...,n2N -1 for any solutions ¢(t, 1)
of the Equations (1.3) for all A € C.
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Proof. For 0 < ¢ < 1, the proof is the same up to (5.5). In this case,
(5.5) becomes

0] = 35 ool 2o+ =230 S

=1

(PZ (t’ ;\'O)

X

mB’"](t, 7“0)"[;

h;(s) ‘(p[i](s, X)‘Gw(s)ds,

r=0,1,...,n’N - 1. (5.8)

Applying the Cauchy-Schwartz inequality to the integral in (5.8), we get

}

0 . 1) 1y (5) [o¥)(s, )]s

(1,

where p=2/(2-0). Since ¢f(t Ao)e L2(0,b) for some iy e C,

1
n

9% (5 xo>\2|hi(s>|“w(s>ds] ( [ Jotes x)\2w(s>dsj%, (5.9)

k=1,2..,n°N and hs)e L%U/(lfc)(O, b) by hypothesis, then we
have ¢} (¢, Ao)|h;(¢)] € L (0, b), for some igeC, k=12, .., n’N;

i1=0,1,.., n’N —1. Using this fact and (5.9), we obtain

e 1) < 3 € + )

1=1

o, 29| + Ko - lOlZ’,iA_f ) ZfﬂN _l‘ajk‘

rola

X

o, 20 [ o, "y

r=0,1,...,n°N -1, (5.10)

where Ky = |¢; (¢, ko)hi(t)"“, [- "u denotes the norm in L} (0, b). The

inequality

(w+v)? < 2u? +0v?), (5.11)
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implies that

.0 < 37 (63 o0 ol 2o a2

7, k=1 Ledi=1

y Zn2N ?2N71‘§jk‘2‘@5'r](t’ xo)f["‘;‘(p[i](s, x)‘zw(s)dsjc,

r=0,1,..,n2N -1. (5.12)

2
Setting K; :jé‘(pg.r](t, XO)‘ w(s)ds for some XLy e C and some

r=0,1, ..., n’N - 1L, k=1,..., n’N and integrating (5.12), we obtain

}

2 2N 2N-1,_ 2t
ot W[ wls)ds < Ky + 4KZ 2Py e fo

|2
J, k=1 i=1

(PE'V](S’ 7\'O)
x [(J.;‘(p[i](x, k)‘Zw(x)dij]w(s)ds, (5.13)

where K, = 427:]\[(0]2 + |0‘j(}‘)|2)K1'

An application of lemma (4.12) for 0 <o <1 and of Gronwall’s

inequality to (5.13) for 6 = 1 yields the result.

Theorem 5.6. Suppose that F satisfies (5.1) with 0<oc <1,
ST(t)U S(x*) = I2(0, b)N L*(0, b), for some Ao eC and some

r=0,1, ..., n?N -1 and that
(i) k(t) e I2/(0, b) forall t < [0, b).
(ii) h;(t) € LP(0, b) for some p, 1<p<2/(1-c),i=0,1,...,n2N 1.

Then (p['"](t, L) e L%U 0,6)NL*(0,b),r=0,1,..., n?N -1 for any solutions
o(t, 1) of the Equations (1.3) for all A € C.
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Proof. Since S"(t)US(t") < IZ/(0, b) for some Ly € C and some
r= 07 17 cey n2N—17 t’hen (p‘[]r](s’ 7\’0)7 (p;C—(t7 7\’0) € Lgu((), b)7 j’ k = 07 17 (KX n2N
for every ¢ > 2 and for some Ay € C and some r =0, 1, ..., n?N 1.

First, suppose that h;(t) € L (0, b) for some p, 1 < p < 2.Setting

Ko = |07, 20)|_and Ky = ot 2ol sk = 0,1, n®N,

for some Ly € C and some r =0, 1, ..., n?N - 1, we have from (5.8) that

N
\tp[’"](t, k)\ < KOZ; (Cj +|a;j(M)]) + KoKq|h = Ao

n2N n2N-1
X
J, k=1 =1

‘ﬁjk‘j; h;i(s) ‘(p[i](s, k)‘cw(s)dsj. (5.14)

Since h;(t) € L (0, b) for some p,1 < p <2, then Lemma 4.12 together
with Gronwall’s inequality implies that (p[r](t, L) e L*(0, b) for all

A € C, i.e., there exists a positive constant K3 such that
‘(p[r](t, ).)‘ <KjforallLeC, te[0,b),r=01,..,n°N-1. (5.15)

From (5.8) and (5.15), we obtain
n’N
o 1| < 20 (C5 + o] + K)o 20)]

for any appropriate constant Kj. Since (p[jr ](t, Ao) € L2(0, b) for some
Lo € C and some r =0, 1, ..., n?N -1, this proves (p[r](t, 1) e LE(0, b)

forall L e C,1< p <2.

Next, suppose that h;(t) e L5 (0, b) for some p,2< p <2/(1-0),

1=0,1, ..., n?N —1. Define g =2 by
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(which is possible because of the restriction on p). Thus (pg.r](s, 1o),
0 (t, o) € LL(0, b) and @i (¢, ho)h;(t) € L, (0, b), p =2/(2 - o).

Repeating the same argument in the proof of Theorem 5.5 and from
(5.9) to (5.13), we obtain that (p[r](t, L) e Lij (0, b). Returning to (5.9), we

find that the integral on the left-hand side is bounded, which implies, by
(5.8) that

o, 1) < 305 + 0]+ K)ol 20),

for an appropriate constant Kj. Since (pg-r](t, Lo) € L*(0, b), this

completes the proof . We refer to [1], [3], and [6, 7] for more details.
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